Bone Marrow Aspirate Concentrate Augmentation for ACL Reconstruction: A double-blinded Randomized Control Trial

Brian Forsythe MD, Bhavik Patel MD, Yining Lu MD, Ophelia Lavoie-Gagne MS4, Enrico Forlenza MS4, Jorge Chahla MD, PhD, Adam Yanke MD, PhD, Nikhil Verma MD, Brian Cole MD, Bernard Bach MD

Head Orthopaedic Officer Chicago Fire Soccer Club
Team Physician, Chicago White Sox & Chicago Bulls
Division of Sports Medicine
Midwest Orthopaedics at RUSH
Rush University Medical Center, Chicago, IL
• No financial support/interests for this presentation:
• Consultant: Stryker
• Stock: Jace Medical, Zimmer, Stryker
• Research/Fellowship Support: Smith & Nephew, Arthrex, Athletico, ConMed Linvatec, Miomed, Mitek, Tornier, Breg
• Publisher Support, Royalties: Elsevier
• Reviewer: Journal of Arthroscopy, AJSM, JSES
The Evolution of ACL Surgery:

- Primary ACL Repairs
- Lateral Extraarticular Tenodesis, Reconstruction
- Intraarticular ACLR: Transtibial → Medial Portal
- Double Bundle ACLR
- Intraarticular Primary ACL Repair
 - Internal Brace?
 - Collagen Scaffolds?
- LET Augmentation with Primary, Revision intraarticular ACLR
- ACL Reconstruction with BMAC?
BMAC: What’s in it?

- 5x nucleated cells (0 in PRP)
- High WBCs
- 1.9% CD34+ Pluripotent Cells
- High b-FGF
Primary ACL Healing

Claes S, Verdonk P, Forsyth R, Bellemans J.
Avascular Necrosis
• Hypocellularity, centrally
• Necrosis \rightarrow Cytokine release \rightarrow GF’s
 • Cell migration, Proliferation, Revascularization

Remodeling:
• Cell Mediated Restructuring of the ECM
• Adaptive response to Mechanical Loading of graft

Ligamentization:
• Acquisition of histologic, biomechanical properties of native ACL
Primary ACLR
Ligamentization: ECM

Allograft integration in a rabbit transgenic model for anterior cruciate ligament reconstruction.

Bachy M, Sherif, Zadegan F, Petite H, Vialle F, Harnouche F

Grafted tendon
New cartilage deposition
The effects of BMAC on ACLR with Allograft tissue:

- The First Randomized Controlled clinical Trial (RCT)

OUR STUDY:
RCT ACLR BTB Allograft +/- BMAC

[Box]

Autologous Bone Marrow Aspirate Concentrate in Patients Undergoing Anterior Cruciate Ligament Reconstruction

Principal Investigator and Contact Person: Brian Forsythe MD

Authorized Representative: Nikhil Verma MD

Co-Investigators: Nikhil Verma MD, Brian J. Cole MD MBA, Adam Yanke, MD PhD, Jorge Chahla, MD PhD, Bernard R Bach Jr MD

Division of Sports Medicine, Midwest Orthopaedics at Rush, Rush University Medical Center, Chicago, IL, USA
To evaluate the effects of BMAC on graft ligamentization:

T2* MR imaging at 3 and 9 months.

T2* MR sequences:

Higher signals at 3 months:
 \[\Rightarrow \text{Superior graft Remodeling} \]

Lower signals at 9 months:
 \[\Rightarrow \text{Superior graft Integration and Homeostasis} \]
To evaluate the effect of BMAC on patient-reported outcome measures (PROMs) and failure rates 3, 6, 9, 12 & 24 months post-operatively

BMAC + BTB Allograft:

Failure rates: => Similar or lower with BMAC

Signal Intensity Ratios:

<table>
<thead>
<tr>
<th></th>
<th>BMAC</th>
<th>Control</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL SIR at 3 months</td>
<td>2.52 ±1.54</td>
<td>1.96 ±0.92</td>
<td>0.166</td>
</tr>
<tr>
<td>ACL SIR at 9 months</td>
<td>3.94 ±2.54</td>
<td>2.81 ±1.44</td>
<td><0.05</td>
</tr>
</tbody>
</table>

Results: T2 MRI
Results: Physical Exam

Side-to-side difference on KT1000 (mm)

<table>
<thead>
<tr>
<th></th>
<th>Preop</th>
<th>6 weeks</th>
<th>3 months</th>
<th>6 months</th>
<th>9 months</th>
<th>P-value at 9 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMAC</td>
<td>1.54 ±1.47</td>
<td>0.31 ±0.91</td>
<td>0.27 ±0.92</td>
<td>0.25 ±0.79</td>
<td>0.17 ±0.60</td>
<td>0.339</td>
</tr>
<tr>
<td>Control</td>
<td>2.10 ±1.35</td>
<td>0.18 ±1.10</td>
<td>0.10 ±0.72</td>
<td>0.18 ±0.91</td>
<td>0.06 ±0.54</td>
<td></td>
</tr>
</tbody>
</table>

Flexion ROM

<table>
<thead>
<tr>
<th></th>
<th>124 ±16.1</th>
<th>119 ±14.1</th>
<th>128 ±0.94</th>
<th>132 ±7.51</th>
<th>133 ±10.4</th>
<th>0.771</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMAC</td>
<td>129 ±12.3</td>
<td>128 ±11.3</td>
<td>128 ±1.52</td>
<td>131 ±12.3</td>
<td>132 ±11.4</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>1.31 ±0.60</td>
<td>0.75 ±0.78</td>
<td>0.95 ±0.52</td>
<td>0.75 ±0.62</td>
<td>1.09 ±0.30</td>
<td>0.890</td>
</tr>
<tr>
<td></td>
<td>1.19 ±0.54</td>
<td>0.86 ±0.66</td>
<td>1.14 ±0.66</td>
<td>1.25 ±0.64</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Extension ROM

<table>
<thead>
<tr>
<th></th>
<th>1.19 ±0.54</th>
<th>0.86 ±0.66</th>
<th>1.14 ±0.66</th>
<th>1.25 ±0.64</th>
</tr>
</thead>
</table>
Results: Flow Cytometry
Results: Patient Reported Outcomes

<table>
<thead>
<tr>
<th></th>
<th>BMAC</th>
<th>Preop</th>
<th>6 weeks</th>
<th>3 months</th>
<th>6 months</th>
<th>9 months</th>
<th>P-value at 9 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>IKDC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMAC</td>
<td>63.8 ±20.1</td>
<td>64.1</td>
<td>64.2</td>
<td>64.2</td>
<td>64.2</td>
<td>64.2</td>
<td>0.041</td>
</tr>
<tr>
<td>Control</td>
<td>61.7 ±16.8</td>
<td>61.7</td>
<td>61.8</td>
<td>61.7</td>
<td>61.7</td>
<td>61.7</td>
<td></td>
</tr>
<tr>
<td>KOOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.830</td>
</tr>
<tr>
<td>BMAC</td>
<td>73.6 ±20.9</td>
<td>73.6</td>
<td>73.6</td>
<td>73.6</td>
<td>73.6</td>
<td>73.6</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>73.5 ±11.8</td>
<td>73.5</td>
<td>74.0</td>
<td>73.5</td>
<td>73.5</td>
<td>73.5</td>
<td></td>
</tr>
<tr>
<td>VR/SF12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.070</td>
</tr>
<tr>
<td>BMAC</td>
<td>42.1 ±11.0</td>
<td>42.1</td>
<td>73.6</td>
<td>73.6</td>
<td>73.6</td>
<td>73.6</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>40.5 ±10.6</td>
<td>40.5</td>
<td>40.5</td>
<td>40.5</td>
<td>40.4</td>
<td>40.4</td>
<td></td>
</tr>
<tr>
<td>VR12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.002</td>
</tr>
<tr>
<td>BMAC</td>
<td>54.5 ±9.04</td>
<td>54.5</td>
<td>54.3</td>
<td>54.5</td>
<td>54.7</td>
<td>54.7</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>52.5 ±9.82</td>
<td>52.5</td>
<td>52.5</td>
<td>52.5</td>
<td>52.5</td>
<td>52.5</td>
<td></td>
</tr>
</tbody>
</table>
Conclusion:

The first RCT evaluating BMAC Augmentation of Allograft ACL Reconstruction:

→ Significantly improved ACL Ligamentization on Radioimaging (3.94 and 2.81, respectively, p<0.05) at 9 months after surgery

Other Superior outcomes at 9 months (p<0.05):

- IKDC
- VR12 Mental Health
Thank you!!